A Simple Network of Synthetic Replicators Can Perform the Logical OR Operation

Victoria C. Allen, Craig C. Robertson, Simon M. Turega, and Douglas Philp*

EaStCHEM and Centre for Biomolecular Sciences, School of Chemistry, University of St Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom

d.philp@st-andrews.ac.uk

Received February 17, 2010

ORGANIC LETTERS 2010 Vol. 12, No. 9 ¹⁹²⁰-**¹⁹²³**

ABSTRACT

A small network of synthetic replicators is capable of responding to instructional inputs such that the output of the network is an excess of one of the replicators whenever the input contains either or both of the replicators, mirroring the OR boolean logic operation.

We have become interested in the exploitation of synthetic strategies that encompass replication processes $¹$ for facilitat-</sup> ing the fabrication of molecular architectures at the nanometer scale. In order to evolve synthetic machinery that is capable of directing its own synthesis and cooperating with other similar systems to create² an organized hierarchy, it is important to develop a fundamental understanding of recognition-mediated processes that allow molecules to function as specific and efficient templates for the formation of themselves (autocatalysis) and other templates (cross catalysis). Such an understanding should permit the development of efficient protocols that allow us to establish and manage replication, organization, and evolution within synthetic molecular and supramolecular assemblies, so-called³ "systems chemistry". Ultimately, the creation of large molecular and supramolecular assemblies can be programmed by

(2) (a) Strogatz, S. H. *Nature* **2001**, *410*, 268–276. (b) Ravasz, E.; Somera, A. L.; Mongru, D. A.; Oltvai, Z. N.; Barabasi, A. L. *Science* **2002**, *297*, 1551–1555. (c) Girvan, M.; Newman, M. E. J. *Proc. Natl. Acad. Sci. U.S.A.* **2002**, *99*, 7821–7826. (d) Guimera`, R.; Amaral, L. A. N. *Nature* **²⁰⁰⁵**, *⁴³³*, 895–900. (e) Perez, J. J. *Chem. Soc. Re*V*.* **²⁰⁰⁵**, *³⁴*, 143–152. (f) Dobson, C. M. *Nature* **2004**, *432*, 824–828. (g) Lavigne, J. J.; Anslyn, E. V. *Angew. Chem., Int. Ed.* **2001**, *40*, 3118–3130.

exploiting⁴ selection and amplification through emergent system behavior.

As an initial step toward this ambitious goal, we explored a system in which a small network of interdependent replicating systems cooperated to exhibit defined emergent behavior. In order to achieve this aim, we must first identify a family of structurally similar self-replicating templates that possess the correct steric and electronic properties to allow them to interact with each other. Previously, we described⁵ the kinetic behavior of template T_1 , which was constructed from nitrone **A** and maleimide **B** (Figure 1). This template is the major product of the reaction between **A** and **B** and was shown to be capable of increasing the rate of its own formation by around 3-fold, at the expense of its catalytically

^{(1) (}a) Patzke, V.; von Kiedrowski, G. *ARKIVOC* **2007**, *5*, 293–310. (b) Vidonne, A.; Philp, D. *Eur. J. Org. Chem.* **2009**, 593–610.

^{(3) (}a) Kindermann, M.; Stahl, I.; Reimold, M.; Pankau, W. M.; von Kiedrowski, G. *Angew. Chem., Int. Ed.* **2005**, *44*, 6750–6755. (b) Nitschke, J. R. *Acc. Chem. Res.* **2007**, *40*, 103–112. (c) Ludlow, R. F.; Otto, S. *Chem. Soc. Re*V*.* **²⁰⁰⁸**, *³⁷*, 101–108. See also: (d) Prins, L. J.; Scrimin, P. *Angew. Chem., Int. Ed.* **2009**, *48*, 2288–2306.

^{(4) (}a) Dadon, Z.; Wagner, N.; Ashkenasy, G. *Angew. Chem., Int. Ed.* **2008**, *47*, 6128–6136. (b) Wagner, N.; Ashkenasy, G. *J. Chem. Phys.* **2009**, 130, 164907. (c) Wagner, N.; Ashkenasy, G. *Chem.*-Eur. J. 2009, 15, 1765-1775. (d) Ashkenasy, G.; Jagasia, R.; Yadav, M.; Ghadiri, M. R. *Proc. Natl. Acad. Sci. USA* **2004**, *101*, 10872. (e) Ashkenasy, G.; Ghadiri, M. R. *J. Am. Chem. Soc.* **2004**, *126*, 11140.

⁽⁵⁾ Allen, V. C.; Philp, D.; Spencer, N. *Org. Lett.* **2001**, *3*, 777–780.

Figure 1. (a) Nitrone **A** and maleimides **B** and **C** are combined to create two self-replicating templates T_1 and T_2 . The corresponding diastereoisomeric templates, T_1' and T_2' , are catalytically inert. (b) Templates T_1 and T_2 cooperate through a network of two autocatalytic and two cross-catalytic cycles.

inactive diastereoisomer T_1' . Building on this discovery, we identified template T_2 , and its diastereoisomer T_2' , as suitable candidates from which to construct the simple network of interdependent catalytic cycles shown in Figure 1. Electronic structure calculations led us to expect that, in common with template T_1 ['], T_2 ['] would be catalytically inactive. Therefore, considering this network, there are two autocatalytic cycles in which each template, \mathbf{T}_1 and \mathbf{T}_2 , directs its own formation. Additionally, because T_1 and T_2 differ by only one CH_2 group, we might expect that two cross-catalytic cycles would also exist in which T_1 directs the formation of T_2 and vice versa. Therefore, the products of a reaction between **^A**-**^C** should depend on the relative efficiencies of each of these four cycles.

Initially, it was important to demonstrate that template T_2 is capable of directing its own formation. We have described $⁶$ </sup> protocols for accomplishing this task previously, and these methods were applied to this system. All reactions were performed from a starting concentration of 25 mM of each reagent at 10 $\rm{^{\circ}C}$ in CDCl₃ and were monitored by 400 MHz ¹H NMR spectroscopy. The control reaction between **A** and the methyl ester of **C** affords a 3.8:1 ratio of the methyl esters of **T2** and **T2**′ at 11% conversion after 10 h. This ratio and

conversion represent the baseline behavior for this system in the absence of any recognition-mediated reactions. The reaction of **A** with **C** affords a 11.4:1 ratio of T_2/T_2' at 42% conversion after 10 h. The important role of recognition in this system was demonstrated by the reaction of **A** with **C** in the presence of the competitive inhibitor benzoic acid (8.4:1 ratio of T_2/T_2 [']; 23% conversion after 10 h). Finally, we demonstrated that T_2 is a template for its own formation through an experiment in which 40 mol % of T_2 was added at the start of the reaction between **A** and **C**. Under these conditions, the rate of formation of T_2 is enhanced significantly (1.6-fold) and the ratio of T_2/T_2 ['] is 16.8:1 at 54% conversion after 10 h. The template T_2' does not show any recognition-mediated behavior in these reactions.

Having demonstrated that template T_2 is capable of directing its own formation, we set about establishing the cross-catalytic behavior of these templates. In these experiments, the building blocks required to construct one template, either T_1 or T_2 , were dissolved in CDCl₃ at 25 mM. This reaction mixture was then doped with 40 mol % of one of the templates, either T_1 or T_2 . Each reaction mixture was then incubated at 10 \degree C for 16 h, and the progress of the reaction was followed by 400 MHz ¹H NMR spectroscopy. The results of this study are presented in Figure 2.

As expected, the results confirm that each template is capable of directing its own formation. The addition of T_1 engenders a 1.6 times enhancement in the maximum rate⁴

^{(6) (}a) Pearson, R. J.; Kassianidis, E.; Slawin, A. M. Z.; Philp, D. *Chem.* $-Eur.$ *J.* **2006**, *12*, 6829–6840. (b) Kassiandis, E.; Pearson, R. J.; Philp, D. *Chem.* $-Eur.$ J. 2006, 12, 8798–8812. (c) Kassianidis, E.; Philp, D. *Angew. Chem., Int. Ed.* **2006**, *45*, 6344–6348. (d) del Amo, V.; Slawin, A. M. Z.; Philp, D. *Org. Lett.* **2008**, *10*, 4589–4592.

Figure 2. Effect of the addition of T_1 and T_2 on (a) the formation of T_1 and (b) the formation of T_2 . The effect of the added template (40 mol % added at the start of the reaction) is measured by log(relative rate). This measure is calculated by taking the logarithm of the ratio of the maximum rates of the reactions in the experiments with and without added template.

of formation of itself. T_2 is a somewhat poorer template for its own formation, engendering a 1.3 times increase in the maximum rate for its formation. It is clear that the behavior of the templates toward each other is markedly different. Template T_2 also directs the formation of T_1 (1.4 times increase in the maximum rate of T_1 production), whereas T_1 inhibits the formation of T_2 slightly (the maximum rate 0.8 times that in the absence of added template). This behavior implies that, although cross-catalytic cycle 1 (Figure 1b) operates efficiently, cross-catalytic cycle 2 does not.

We found these results surprising given the structural similarity of the templates. We therefore turned to electronic structure calculation of the transition states of the autocatalytic and cross-catalytic ternary complexes (Figure 3) in order to gain some insight into the subtle structural mismatch between the templates. Calculations were performed at the B3LYP/6-31G(d,p) level of theory, and transition states leading to the appropriate products were located successfully for each of the four ternary complexes.

The results of these calculations are revealing. For the autocatalytic ternary complexes $[A \cdot B \cdot T_1]$ and $[A \cdot C \cdot T_2]$, the transition states leading to $[T_1 \cdot T_1]$ and $[T_2 \cdot T_2]$ are supported on the preformed template without distortion and the transition states are bound to the preformed templates by four hydrogen bonds. The structure of [**A**·**B**·**T1**] (Figure 3a) is representative of the transition states where the templates are matched. In the case of the cross-catalytic ternary complex $[A \cdot B \cdot T_2]$, the transition state leading to $[T_1 \cdot T_2]$ is also supported on the preformed template without distortion by four hydrogen bonds. However, the calculated structure of the transition state accessed by the cross-catalytic ternary

Figure 3. Calculated (B3LYP/6-31G(d,p)) transition-state structures for (a) forming \mathbf{T}_1 on a \mathbf{T}_1 template ($a = 2.11$ Å; $b = 2.12$ Å) and (b) forming \mathbf{T}_2 on a \mathbf{T}_1 template ($a = 2.07$ Å; $b = 2.16$ Å). The dihedral angle about the starred bond is 61°. Atom types are represented by shading dark to light in the order carbon, oxygen, nitrogen, and hydrogen. Hydrogen bonds are represented by dotted lines and partial bonds in the transition states by dashed lines. Most hydrogen atoms have been removed for clarity.

complex $[A \cdot C \cdot T_1]$ shows significant distortion (Figure 3b) and forces maleimide **C** to adopt an unfavorable conformation (starred bond, Figure 3b) in order to access the transition state. This distortion is a result of the shorter overall length of the T_1 template. Although the T_2 template can compress itself to accommodate the transition state leading to T_1 within $[A \cdot B \cdot T_2]$, the shorter and more rigid structure of T_1 forces compression of the T_2 transition state when accessed from [**A**·**C**·**T1**]. These results are in complete accord with those observed experimentally and identify the small structural mismatch that gives rise to the observed behavior.

It is therefore clear that, in a reaction mixture containing **^A**-**C**, only three of the four possible catalytic cycles will be operative. Hence, we might expect that this network will display emergent behavior analogous to the logical OR operation. If we imagine that system inputs are the identities of the templates added and a reaction mixture containing **A**, **B** and **C** and the system output is the T_1/T_2 ratio, we can use our knowledge of the kinetic behavior of the templates in isolation to predict the overall network topology. In the absence of any added template, the replicators are of similar efficiency and should therefore coexist. In the presence of added template T_1 , T_1 will be amplified and T_2 suppressed since T_1 is a catalyst for its own formation and an inhibitor for the formation of T_2 . In the presence of added template **T2**, **T1** will be amplified through the cross-catalytic action of T_2 , and the more T_1 is produced, the more dominant autocatalytic cycle 1 will become and the more the formation of **T2** will be inhibited. In the presence of both templates,

⁽⁷⁾ Maximum rates (velocities) of reaction were calculated by determining the largest value of the first derivative of the polynomial function describing the concentration time profile for each reaction. For bimolecular reactions, this metric is equivalent to the initial rate. For autocatalytic reactions, this represents the point of inflection of the sigmoidal curve.

 T_1 will be amplified and T_2 suppressed because T_1 is a catalyst for its own formation and an inhibitor for the formation of T_2 . This behavior represents the logical OR operation: the presence of either template or both templates together results in the enhanced formation of T_1 (T_1/T_2) 1).

With this expectation in mind, we conducted a series of four experiments, in each of which the starting concentrations of $A - C$ were all 25 mM and 20 mol % template T_1 and/or **T2** was added as appropriate at the start of the reactions. All reactions were carried out in CDCl₃ at 10 $^{\circ}$ C, and the reaction mixtures were assayed⁸ after 4 and 8 h by 400 MHz ¹H NMR spectroscopy (see the Supporting Information for details). The results are summarized in Figure 4.

Figure 4. Ratio of $[T_1]/[T_2]$ is higher when the identity of the input template is T_1 OR T_2 .

The results of these experiments confirm our predictions. Taking experiment A (Figure 4) as the baseline, the formation of T_1 is enhanced significantly, by 1.8 times, when only T_1 is added (experiment B, Figure 4). Clearly, in this case, autocatalytic cycle 1 is dominant. When only T_2 is added (experiment C, Figure 4), T_1 is once again amplified at the expense of T_2 . This outcome can be rationalized readily by

realizing that T_2 is, in fact, also a catalyst for the formation of **T1**. Therefore, cross-catalytic cycle 1 (Figure 1b) will generate significant quantities of T_1 . The production of T_1 will, in turn, allow autocatalytic cycle 1 (Figure 1b) to become operative and, in addition, impose an inhibitory effect on the operation of cross-catalytic cycle 2 (Figure 1b). The net effect is amplification of T_1 at the expense of T_2 . When both templates are added together (experiment D, Figure 4), T_1 is once again amplified strongly at the expense of T_2 . In this case, autocatalytic cycle 1 and cross-catalytic cycle 1 are the dominant pathways in the system.

This series of experiments confirms our expectation that this small network of simple synthetic replicating systems is capable of acting in concert to perform the logical OR operation based on the input template. Template T_1 is enhanced when the template input is T_1 or T_2 or both. Although the amplification effects reported here are not particularly large, we believe that this can be remedied by a careful computationally assisted replicator design. However, it is striking that two templates whose molecular weights are around 400 and which differ by a single $CH₂$ unit can exhibit the behavior observed here. The results presented here bode well for the development of more complex recognitionmediated reaction networks⁹ that rely on multiple recognition events, such as a combination of minimal and reciprocal¹⁰ replicators. Such systems can potentially generate and express more complex programmed responses to chemical inputs through template-directed processes. These strategies are currently under development in our laboratory.

Acknowledgment. The financial support of the Engineering and Physical Sciences Research Council and the Biotechnology and Biological Sciences Research Council is gratefully acknowledged.

Supporting Information Available: Experimental procedures and characterization for compunds $A - C$, T_1 , and **T2** and procedures for conducting and assaying kinetic experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽⁸⁾ Analysis of complex systems by NMR spectroscopy relies on there OL100404G being sufficient dispersion of the resonances utilized in the assay. ¹H NMR spectroscopy is not ideal for this purpose because ¹H chemical shifts span a relatively small range. In the system presented here, dispersion is not an issue. However, in cases where signal dispersion does become a problem, 19F NMR spectroscopy provides a suitable alternative (see ref 9a for an example).

^{(9) (}a) Sadownik, J. W.; Philp, D. *Angew. Chem., Int. Ed.* **2008**, *47*, 9965–9970. (b) Kassianidis, E.; Pearson, R. J.; Wood, E. A.; Philp, D. *Faraday Discuss.* **2010**, *145*, 235–254.

⁽¹⁰⁾ Kassianidis, E.; Philp, D. *Chem. Commun.* **2006**, 4072–4074.